Lecture 6 : Inverse Trigonometric Functions
Inverse Sine Function ($\arcsin \mathbf{x}=\sin ^{-1} x$) The trigonometric function $\sin x$ is not one-to-one functions, hence in order to create an inverse, we must restrict its domain. The restricted sine function is given by

$$
f(x)=\left\{\begin{array}{cc}
\sin x & -\frac{\pi}{2} \leq x \leq \frac{\pi}{2} \\
\text { undefined } & \text { otherwise }
\end{array}\right.
$$

We have Domain $(\mathrm{f})=\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ and Range $(\mathrm{f})=[-1,1]$.

We see from the graph of the restricted sine function (or from its derivative) that the function is one-to-one and hence has an inverse, shown in red in the diagram below.

This inverse function, $f^{-1}(x)$, is denoted by

$$
f^{-1}(x)=\sin ^{-1} x \text { or } \quad \arcsin x
$$

Properties of $\sin ^{-1} x$.
Domain $\left(\sin ^{-1}\right)=[-1,1]$ and Range $\left(\sin ^{-1}\right)=\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$.
Since $f^{-1}(x)=y$ if and only if $f(y)=x$, we have:

$$
\sin ^{-1} x=y \text { if and only if } \sin (y)=x \text { and }-\frac{\pi}{2} \leq y \leq \frac{\pi}{2}
$$

Since $f\left(f^{-1}\right)(x)=x \quad f^{-1}(f(x))=x$ we have:

$$
\sin \left(\sin ^{-1}(x)\right)=x \text { for } x \in[-1,1] \quad \sin ^{-1}(\sin (x))=x \text { for } x \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]
$$

from the graph: $\sin ^{-1} x$ is an odd function and $\sin ^{-1}(-x)=-\sin ^{-1} x$.
Example Evaluate $\sin ^{-1}\left(\frac{-1}{\sqrt{2}}\right)$ using the graph above.

Example Evaluate $\sin ^{-1}(\sqrt{3} / 2), \quad \sin ^{-1}(-\sqrt{3} / 2)$,

Example Evaluate $\sin ^{-1}(\sin \pi)$.

Example Evaluate $\cos \left(\sin ^{-1}(\sqrt{3} / 2)\right)$.

Example Give a formula in terms of x for $\tan \left(\sin ^{-1}(x)\right)$

$$
\begin{gathered}
\text { Derivative of } \sin ^{-1} x \\
\frac{d}{d x} \sin ^{-1} x=\frac{1}{\sqrt{1-x^{2}}}, \quad-1 \leq x \leq 1 .
\end{gathered}
$$

Proof We have $\sin ^{-1} x=y$ if and only if $\sin y=x$. Using implicit differentiation, we get $\cos y \frac{d y}{d x}=1$ or

$$
\frac{d y}{d x}=\frac{1}{\cos y}
$$

Now we know that $\cos ^{2} y+\sin ^{2} y=1$, hence we have that $\cos ^{2} y+x^{2}=1$ and

$$
\cos y=\sqrt{1-x^{2}}
$$

and

$$
\frac{d}{d x} \sin ^{-1} x=\frac{1}{\sqrt{1-x^{2}}}
$$

If we use the chain rule in conjunction with the above derivative, we get

$$
\frac{d}{d x} \sin ^{-1}(k(x))=\frac{k^{\prime}(x)}{\sqrt{1-(k(x))^{2}}}, \quad x \in \operatorname{Dom}(k) \text { and }-1 \leq k(x) \leq 1
$$

Example Find the derivative

$$
\frac{d}{d x} \sin ^{-1} \sqrt{\cos x}
$$

Inverse Cosine Function We can define the function $\cos ^{-1} x=\arccos (x)$ similarly. The details are given at the end of this lecture.

$$
\text { Domain }\left(\cos ^{-1}\right)=[-1,1] \quad \text { and } \quad \text { Range }\left(\cos ^{-1}\right)=[0, \pi] .
$$

$$
\cos ^{-1} x=y \quad \text { if and only if } \quad \cos (y)=x \quad \text { and } 0 \leq y \leq \pi
$$

$$
\cos \left(\cos ^{-1}(x)\right)=x \text { for } x \in[-1,1] \quad \cos ^{-1}(\cos (x))=x \text { for } x \in[0, \pi]
$$

It is shown at the end of the lecture that

$$
\frac{d}{d x} \cos ^{-1} x=-\frac{d}{d x} \sin ^{-1} x=\frac{-1}{\sqrt{1-x^{2}}}
$$

and one can use this to prove that

$$
\sin ^{-1} x+\cos ^{-1} x=\frac{\pi}{2} .
$$

Inverse Tangent Function

The tangent function is not a one to one function, however we can also restrict the domain to construct a one to one function in this case.
The restricted tangent function is given by

$$
h(x)=\left\{\begin{array}{cc}
\tan x & -\frac{\pi}{2}<x<\frac{\pi}{2} \\
\text { undefined } & \text { otherwise }
\end{array}\right.
$$

We see from the graph of the restricted tangent function (or from its derivative) that the function is one-to-one and hence has an inverse, which we denote by

$$
h^{-1}(x)=\tan ^{-1} x \text { or } \quad \arctan x
$$

Properties of $\tan ^{-1} x$.
$\operatorname{Domain}\left(\tan ^{-1}\right)=(-\infty, \infty)$ and Range $\left(\tan ^{-1}\right)=\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$.
Since $h^{-1}(x)=y$ if and only if $h(y)=x, \quad$ we have:

$$
\tan ^{-1} x=y \text { if and only if } \tan (y)=x \text { and }-\frac{\pi}{2}<y<\frac{\pi}{2} .
$$

Since $h\left(h^{-1}(x)\right)=x \quad$ and $\quad h^{-1}(h(x))=x$, we have:

$$
\tan \left(\tan ^{-1}(x)\right)=x \text { for } x \in(-\infty, \infty) \quad \tan ^{-1}(\tan (x))=x \text { for } x \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)
$$

Frpm the graph, we have: $\tan ^{-1}(-x)=-\tan ^{-1}(x)$.
Also, since $\quad \lim _{x \rightarrow\left(\frac{\pi^{-}}{}-\right)} \tan x=\infty$ and $\lim _{x \rightarrow\left(-\frac{\pi}{2}^{+}\right)} \tan x=-\infty$, we have $\lim _{x \rightarrow \infty} \tan ^{-1} x=\frac{\pi}{2} \quad$ and $\quad \lim _{x \rightarrow-\infty} \tan ^{-1} x=-\frac{\pi}{2}$

Example Find $\tan ^{-1}(1)$ and $\tan ^{-1}\left(\frac{1}{\sqrt{3}}\right)$.

Example Find $\cos \left(\tan ^{-1}\left(\frac{1}{\sqrt{3}}\right)\right)$.

$$
\begin{gathered}
\text { Derivative of } \tan ^{-1} x \\
\frac{d}{d x} \tan ^{-1} x=\frac{1}{x^{2}+1}, \quad-\infty<x<\infty \\
\end{gathered}
$$

Proof We have $\tan ^{-1} x=y$ if and only if $\tan y=x$. Using implicit differentiation, we get $\sec ^{2} y \frac{d y}{d x}=1$ or

$$
\frac{d y}{d x}=\frac{1}{\sec ^{2} y}=\cos ^{2} y
$$

Now we know that $\cos ^{2} y=\cos ^{2}\left(\tan ^{-1} x\right)=\frac{1}{1+x^{2}}$. proving the result.
If we use the chain rule in conjunction with the above derivative, we get

$$
\frac{d}{d x} \tan ^{-1}(k(x))=\frac{k^{\prime}(x)}{1+(k(x))^{2}}, \quad x \in \operatorname{Dom}(k)
$$

Example Find the domain and derivative of $\tan ^{-1}(\ln x)$
Domain $=(0, \infty)$

$$
\frac{d}{d x} \tan ^{-1}(\ln x)=\frac{\frac{1}{x}}{1+(\ln x)^{2}}=\frac{1}{x\left(1+(\ln x)^{2}\right)}
$$

Integration formulas

Reversing the derivative formulas above, we get

$$
\int \frac{1}{\sqrt{1-x^{2}}} d x=\sin ^{-1} x+C, \quad \int \frac{1}{x^{2}+1} d x=\tan ^{-1} x+C,
$$

Example

$$
\begin{gathered}
\int \frac{1}{\sqrt{9-x^{2}}} d x= \\
\int \frac{1}{3 \sqrt{1-\frac{x^{2}}{9}}} d x=\int \frac{1}{3 \sqrt{1-\frac{x^{2}}{9}}} d x=\frac{1}{3} \int \frac{1}{\sqrt{1-\frac{x^{2}}{9}}} d x
\end{gathered}
$$

Let $u=\frac{x}{3}$, then $d x=3 d u$ and

$$
\int \frac{1}{\sqrt{9-x^{2}}} d x=\frac{1}{3} \int \frac{3}{\sqrt{1-u^{2}}} d u=\sin ^{-1} u+C=\sin ^{-1} \frac{x}{3}+C
$$

Example

$$
\int_{0}^{1 / 2} \frac{1}{1+4 x^{2}} d x
$$

Let $u=2 x$, then $d u=2 d x, \quad u(0)=0, \quad u(1 / 2)=1$ and

$$
\begin{gathered}
\int_{0}^{1 / 2} \frac{1}{1+4 x^{2}} d x=\frac{1}{2} \int_{0}^{1} \frac{1}{1+u^{2}} d x=\left.\frac{1}{2} \tan ^{-1} u\right|_{0} ^{1}=\frac{1}{2}\left[\tan ^{-1}(1)-\tan ^{-1}(0)\right] \\
\frac{1}{2}\left[\frac{\pi}{4}-0\right]=\frac{\pi}{8}
\end{gathered}
$$

The restricted cosine function is given by

$$
g(x)=\left\{\begin{array}{cc}
\cos x & 0 \leq x \leq \pi \\
\text { undefined } & \text { otherwise }
\end{array}\right.
$$

We have Domain $(\mathrm{g})=[0, \pi]$ and Range $(\mathrm{g})=[-1,1]$.

We see from the graph of the restricted cosine function (or from its derivative) that the function is one-to-one and hence has an inverse,

$$
g^{-1}(x)=\cos ^{-1} x \quad \text { or } \quad \arccos x
$$

$$
\text { Domain }\left(\cos ^{-1}\right)=[-1,1] \quad \text { and } \quad \text { Range }\left(\cos ^{-1}\right)=[0, \pi] .
$$

Recall from the definition of inverse functions:

$$
\begin{aligned}
& g^{-1}(x)=y \text { if and only if } g(y)=x . \\
& \cos ^{-1} x=y \quad \text { if and only if } \quad \cos (y)=x \quad \text { and } \quad 0 \leq y \leq \pi . \\
& g\left(g^{-1}(x)\right)=x \quad g^{-1}(g(x))=x \\
& \cos \left(\cos ^{-1}(x)\right)=x \text { for } x \in[-1,1] \quad \cos ^{-1}(\cos (x))=x \text { for } x \in[0, \pi] \text {. }
\end{aligned}
$$

Note from the graph that $\cos ^{-1}(-x)=\pi-\cos ^{-1}(x)$.
$\cos ^{-1}(\sqrt{3} / 2)=$ \qquad and $\cos ^{-1}(-\sqrt{3} / 2)=$ \qquad
You can use either chart below to find the correct angle between 0 and π.:

	0°	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	π	$\frac{3 \pi}{2}$	2π
\sin	0	$\frac{1}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{\sqrt{3}}{2}$	1	0	-1	0
\cos	1	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{2}$	0	-1	0	1
\tan	0	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$	not defined	0	not defined	0

$$
\tan \left(\cos ^{-1}(\sqrt{3} / 2)\right)=
$$

\qquad
$\tan \left(\cos ^{-1}(x)\right)=$ \qquad
Must draw a triangle with correct proportions:

$\cos \theta=x$

$\cos \theta=\mathrm{x} \quad \cos ^{-1} \mathrm{x}=\theta$
$\tan \left(\cos ^{-1} x\right)=\tan \theta=\frac{\sqrt{1-x^{2}}}{x}$

$$
\frac{d}{d x} \cos ^{-1} x=\frac{-1}{\sqrt{1-x^{2}}}, \quad-1 \leq x \leq 1
$$

Proof We have $\cos ^{-1} x=y$ if and only if $\cos y=x$. Using implicit differentiation, we get $-\sin y \frac{d y}{d x}=1$ or

$$
\frac{d y}{d x}=\frac{-1}{\sin y}
$$

Now we know that $\cos ^{2} y+\sin ^{2} y=1$, hence we have that $\sin ^{2} y+x^{2}=1$ and

$$
\sin y=\sqrt{1-x^{2}}
$$

and

$$
\frac{d}{d x} \cos ^{-1} x=\frac{-1}{\sqrt{1-x^{2}}}
$$

Note that $\frac{d}{d x} \cos ^{-1} x=-\frac{d}{d x} \sin ^{-1} x$. In fact we can use this to prove that $\sin ^{-1} x+\cos ^{-1} x=\frac{\pi}{2}$.
If we use the chain rule in conjunction with the above derivative, we get

$$
\frac{d}{d x} \cos ^{-1}(k(x))=\frac{-k^{\prime}(x)}{\sqrt{1-(k(x))^{2}}}, \quad x \in \operatorname{Dom}(k) \text { and }-1 \leq k(x) \leq 1
$$

